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Abstract In this paper, we propose a method for
classification of sport videos using edge-based features,
namely edge direction histogram and edge intensity histo-
gram. We demonstrate that these features provide discrimi-
native information useful for classification of sport videos, by
considering five sports categories, namely, cricket, football,
tennis, basketball and volleyball. The ability of autoassocia-
tive neural network (AANN) models to capture the distribu-
tion of feature vectors is exploited, to develop class-specific
models using edge-based features. We show that combin-
ing evidence from complementary edge features results in
improved classification performance. Also, combination of
evidence from different classifiers like AANN, hidden Mar-
kov model (HMM) and support vector machine (SVM) helps
improve the classification performance. Finally, the perfor-
mance of the classification system is examined for test videos
which do not belong to any of the above five categories. A
low rate of misclassification error for these test videos val-
idates the effectiveness of edge-based features and AANN
models for video classification.
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1 Introduction

Classification of digital videos into various genres, or
categories is an important task, and enables efficient catalog-
ing and retrieval with large video collections. The objective of
video classification is to classify a given video clip into one
of the predefined video categories. Many approaches have
been proposed for content-based classification of video data.
The problem of content-based classification of video can be
addressed at different levels in the semantic hierarchy. For
instance, video collections can be categorized into differ-
ent program genres such as news, commercials and sports.
Then, videos of a particular genre, such as sports, can be fur-
ther classified into sub-categories like soccer, hockey, cricket,
etc. A video sequence of a given sub-category can then be
partitioned into smaller segments, and these segments can be
classified into semantically meaningful classes.

In this paper, we address the problem of sport videos clas-
sification for five classes, namely, cricket, football, tennis,
basketball and volleyball. Sports videos represent an impor-
tant application domain due to their commercial appeal. Clas-
sification of sports video data is a challenging problem,
mainly due to the similarity between different sports in terms
of entities such as playing field, players and audience. Also,
there exists significant variation in the video of a given cat-
egory collected from different TV programs/channels. This
intra-class variability contributes to the difficulty of classifi-
cation of sports videos.

Content-based video classification is essentially a pat-
tern classification problem [1] in which there are two basic
issues, namely, feature extraction and classification based
on the selected features. Feature extraction is the process of
extracting descriptive parameters from the video, which will
be useful in discriminating between classes of video. The
classifier operates in two phases: training and testing phase.
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Training is the process of familiarizing the system with the
video characteristics of a given category, and testing is the
actual classification task, where a test video clip is assigned
a class label.

Several audio–visual features have been described for
characterizing semantic content in multimedia [2]. The gen-
eral approach to video classification involves extraction of
visual features based on color, shape, and motion, followed
by estimation of class-specific probability density function of
the feature vectors [3,4]. A criterion based on the total length
of edges in a given frame is used in [5]. The edges are com-
puted by transforming each block of 8 × 8 pixels using dis-
crete cosine transform (DCT), and then processing the DCT
coefficients. A rule-based decision is then applied to clas-
sify each frame into one of the predefined semantic catego-
ries. Another edge-based feature, namely, the percentage of
edge pixels, is extracted from each keyframe for classifying
a given sports video into one of the five categories, namely,
badminton, soccer, basketball, tennis, and figure skating [6].
The k-nearest neighbor algorithm was used for classifica-
tion. Motion is another important feature for representation of
video sequences. A feature, called motion texture, is derived
from motion field between video frames, either in optical
flow field or in motion vector field in [7]. These features
are employed in conjunction with support vector machines
(SVMs) to devise a set of multicategory classifiers.

The approach described in [8] defines local measurements
of motion, whose spatio-temporal distributions are modeled
using statistical nonparametric modeling. To exploit the
strong correlation between the camera motion and the actions
taken in sports, sports videos are categorized on the basis
of camera motion parameters [9]. The camera motion pat-
terns such as fix, pan, zoom, and shake are extracted from
the video data. Motion dynamics such as foreground object
motion and background camera motion are extracted in [10]
for classification of a video sequence into three broad cate-
gories, namely, sports, cartoons and news. Transform coeffi-
cients derived from DCT and Hadamard transform of image
frames are reduced in dimension using principal compo-
nent analysis (PCA) [11]. The probability density function
of the compressed features is then modeled using a mixture
of Gaussian densities. Dimension reduction of low-level fea-
tures such as color and texture, using PCA, has also been
attempted in [12,13]. Another approach, described in [14],
constructs two hidden Markov models (HMMs), one from
the principal motion direction, and the other from the princi-
pal color of each frame. The decisions from both the models
are combined to obtain the final score for classification. Apart
from the above statistical models, rule-based methods have
also been applied for classification. A decision tree method
is used in [15] to classify videos into different genres. For
this purpose, several attributes are derived from the video
sequences, such as length of the video clip, number of shots,

average shot length and percentage of cuts. A set of decision
rules is derived using these attributes.

Edges constitute an important feature to represent the
content of an image. Human visual system is sensitive to
edge-specific features for image perception. In sports video
classification, images that contain the playing field are signif-
icant for distinguishing among the classes of sports. This is
because, each sport has its own distinct playing field, where
most of the action takes place. Also, the interaction among
subjects (players, referees and audience) and objects (ball,
goal, basket) is unique to each sport. A few sample images
of each sports category are shown in Fig. 1. The correspond-
ing edge images are shown in Fig. 2. Each playing field has
several distinguishing features such as lines present on the
playing field, and regions of different textures. The subjects
are also prominent in the images, thus helping in distinguish-
ing different sports. From Fig. 2, we can observe that edge
features are important for representing the content of sports
video, and also these features carry sufficient information
for discriminating among classes. These observations sug-
gest that features derived to represent the edge information
can be of significant help for discriminating various catego-
ries of sports.

In this paper, we propose to make use of two edge-based
features which provide complementary information for clas-
sification of sports videos. We exploit the capability of auto-
associative neural network models to capture the distribution
of the feature vectors. Two other classifier methodologies,
namely, HMMs and support vector machines (SVMs), are
employed for their ability to capture the sequence infor-
mation and discriminative learning, respectively. Evidences
from these classifiers are combined to improve the perfor-
mance of video classification.

The paper is organized as follows: In Sect. 2, edge direc-
tion histogram (EDH) and edge intensity histogram (EIH)
are extracted for representing the visual features inherent
in a video class. Section 3 gives a brief introduction to the
classifier methodologies used for video classification. The
section also describes a method to combine the evidences
from multiple classifiers. Section 4 describes experiments
for classification of videos of the five sports categories, and
discusses the performance of the system. Section 5 summa-
rizes the study.

2 Extraction of edge-based features

We consider two features to represent the edge information,
namely, EDH and EIH. Edge direction histogram is one of
the standard visual descriptors defined in MPEG-7 for image
and video, and provides a good representation of nonho-
mogeneous textured images [16]. This descriptor captures
the spatial distribution of edges. Our approach to compute
the EDH is a modified version of the approach given in
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Fig. 1 Sample images from
five different sports video
categories: a Basketball,
b cricket, c football, d tennis
and e volleyball

[16]. A given image is first segmented into four sub-images.
The edge information is then calculated for each sub-image
using Canny algorithm [17]. The range of the edge directions
(0◦–180◦) is quantized into 5 bins. Thus, an image partitioned
into four sub-images results in a 20-dimensional EDH fea-
ture vector for each frame of a video clip. The choice of
partitioning an image into four sub-images and quantization
of edge directions into 5 bins are found to be appropriate
based on experimental evidence. Figure 3 shows 20-dimen-
sional EDHs for five different categories. Each histogram is
obtained by averaging the histograms obtained from individ-
ual frames of a clip. The clips were selected randomly from

five different classes. The figure shows that the pattern of
EDH is different for different classes, and that the selected
features carry discriminative information among the differ-
ent video classes.

We also consider the distribution of the edge intensities
to evaluate the degree of uniformity of the edge pixels. This
feature is derived from the magnitude information of the edge
pixels. The range of magnitudes (0–255) is quantized into 16
bins, and a 16-dimensional EIH is derived from each frame
of a video clip. Figure 4 shows the 16-dimensional EIH for
five different categories. Each histogram is obtained by aver-
aging the histograms obtained from individual frames of a
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Fig. 2 Edge images
corresponding to the five
different images shown in Fig. 1,
for the following categories:
a Basketball,
b cricket, c football, d tennis
and e volleyball

clip. The clips were selected randomly from the five different
classes. From Figs. 3 and 4, we observe that EDH carries
more discriminative information among the classes than EIH.

3 Classifier methodologies

Once features are extracted, the next step is to model the
behavior of the features for performing classification. We
consider three classifier methodologies for our study, namely,
autoassociative neural networks (AANN), HMMs, and
SVMs. The AANNs are useful to model the video content,
due to their ability to capture the distribution of the feature

vectors [18]. Given the temporal nature of the video, HMMs
are effective for modeling the time-varying patterns [19].
Support vector machines are useful for their inherent discrim-
inative learning ability and good generalization performance
[20]. In the following subsections, a brief introduction to the
three classifier methodologies is presented.

3.1 AANN models for estimating the density of feature
vectors

Autoassociative neural network models are feedforward neu-
ral networks, performing an identity mapping of the input
space [21,22]. From a different perspective, AANN models
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Fig. 3 Average edge direction
histogram feature vectors of 20
dimension for sample clips
selected randomly from the five
different classes: a Basketball,
b cricket, c football, d tennis
and e volleyball
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can be used to capture the distribution of input data [18]. The
distribution capturing ability of the AANN models is dis-
cussed in detail in Appendix. In this study, separate AANN
models are used to capture the distribution of feature vectors
of each sports video category. A five-layer AANN model is
shown in Fig. 5. The structure of the AANN model used in
the present studies is 20L 40N 6N 40N 20L, where L denotes
linear units and N denotes nonlinear units. This structure is
arrived at experimentally. The activation function of the non-
linear unit is a hyperbolic tangent function. The network is
trained using error backpropagation learning algorithm for
500 epochs [21]. One epoch denotes the presentation of all
the training examples (of a given class) to the neural network

exactly once. The number of epochs is chosen using cross-
validation for verification, to obtain the best performance for
the experimental data.

The block diagram of the proposed sports video classifica-
tion system based on EDH is shown in Fig. 6. For each video
category, a separate AANN model is developed. The model
giving the strongest evidence for a given test clip is hypoth-
esized as the category of the test clip. Similar classification
system is developed for features based on EIH. The EDH and
EIH feature vectors corresponding to each sports category are
used to train two separate AANN models for each feature
type. The AANN models are trained using backpropagation
learning algorithm in the pattern mode [21,22]. The learning
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Fig. 4 Average edge intensity
histogram feature vectors of 16
dimension for sample clips
selected randomly from the five
different classes: a Basketball,
b cricket, c football, d tennis
and e volleyball
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algorithm adjusts weights of the network to minimize the
mean squared error obtained for each feature vector.

A test video clip is processed to extract the EDH and EIH
features. These features are presented as input to the AANN
models of all the categories. The output of each model is com-
pared with its input to calculate the squared error for each
frame. The error Ek for the kth frame is transformed into
a confidence value by using the relation Ck = exp(−Ek).
For a given test clip, the confidence value is given by C =
1
N

∑N
k=1 Ck , where N is the total number of frames in the test

clip. For each category, two confidence values are obtained,
one for each feature type. These two scores are combined
using linear weighted average rule to obtain a combined score
Ĉ given by

Ĉ = w × Cd + (1 − w) × Ci , (1)

where Cd and Ci denote the confidence scores for EDH and
EIH features, respectively. The value of w (0 ≤ w ≤ 1) is
chosen to maximize the classification performance for the
given data set. Thus, for each test video clip, five scores are
obtained. The category whose model gives the highest confi-
dence value is hypothesized as the sports category of the test
clip. Experimental results are discussed in Sect. 4.

3.2 Hidden Markov models

The hidden Markov model consists of finite number (N ) of
states. The state of the system at each time step is updated
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Fig. 5 Structure of five-layer AANN model used for video classifica-
tion

according to a probability distribution that depends only on
the previous state. Additionally, a symbol is generated in each
state according to a probability distribution that depends on
that state. The parameters of the HMM are adjusted using the
training data set [23]. Given a HMM model λ and an obser-
vation sequence O, the probability P(O/λ) that this obser-
vation sequence comes from the model λ is calculated as a
sum over all possible state sequences. The hidden Markov
model toolkit (HTK) was used for developing class-specific
models [24]. The number of states (N = 7) and number
of mixtures (M = 1) per state are chosen experimentally
to obtain the best classification performance. During testing
phase, the HMM gives the log probability, representing the
likelihood that the given clip belongs to that particular class.

The test methodology is similar to the block schematic shown
in Fig. 6. Experimental results are discussed in Sect. 4.

3.3 Support vector machines for video classification

Support vector machines provide a new approach to the pat-
tern classification problems with underlying basis in statis-
tical learning theory, in particular the principle of structural
risk minimization [25]. The SVM models learn to separate
the boundary regions between patterns belonging to two clas-
ses by mapping the input patterns onto a high-dimensional
space, and seeking a separating hyperplane in this space. The
separating hyperplane is chosen in such a way as to maximize
its distance (margin) from the closest training examples. We
consider SVM models for classification due to their ability
to generalize from limited amount of training data, and also
due to their inherent discriminative learning [22]. The SVM-
Torch-II [26] was used for developing class-specific SVM
models. When a given feature vector corresponding to a test
clip is presented to an SVM model, the result is a measure of
the distance of the feature vector from the hyperplane con-
structed as a decision boundary between a given class and
the remaining classes.

The performance of the pattern classification problem
depends on the type of kernel function chosen. Possible
choices of kernel function include polynomial, Gaussian and
sigmoidal functions. In this work, we have used Gaussian
kernel, since it was empirically observed to perform better
than the other two. This class of SVMs involves two param-
eters, namely, the kernel width σ and the penalty param-
eter P . In our experiments, the value of σ represents the
dynamic range of the features. The value of P was chosen

Fig. 6 Block diagram of the
proposed video classification
system using edge direction
histogram features. Categories
1–5 are cricket, football, tennis,
basketball and volleyball
respectively
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corresponding to the best classification performance. The
SVMs were originally designed for two-class classification
problems. In our work, multi-class (M = 5) classification
task is achieved using one-against-rest approach, where an
SVM is constructed for each class by discriminating that
class against the remaining (M − 1) classes. The test meth-
odology is similar to the block schematic shown in Fig. 6.
Experimental results are discussed in Sect. 4.

3.4 Combining evidence due to multiple classifiers

It has been shown in the literature [27–30] that combination
of evidence obtained from several complementary classifiers
can improve the performance of classification. The reasons
for combining evidence from multiple classifiers/features are
as follows: (a) For a specific pattern recognition applica-
tion, each classifier methodology can attain only a certain
degree of success, but combining evidence from different
methodologies can reinforce a positive decision and min-
imize the incidence of misclassification. (b) It is hard to
lump different features together to design one single clas-
sifier, due to the curse of dimensionality. (c) Combining
evidence from different features which provide complemen-
tary information about a given class may help in improving
classification.

There are numerous types of features that can be extracted
from the same raw data. Based on each of these features, a
classifier or several different classifiers can be trained for the
same classification task. As a result, we need to combine the
results from these classifiers to produce an improved result
for the classification task. The output information from a
classifier reflects the degree of confidence that the specific
input belongs to the given class. First, the evidence due to
two different features, namely, the EDH and EIH, are com-
bined using the rule of linear weighting, as described in Eq. 1.
At the next level, evidence obtained from different classifiers
are combined using linear weighting. The outcome of such a
combination of evidences is discussed in the next section.

4 Results and discussion

4.1 Data set

Experiments are carried out on about 5 h and 30 min of video
data (1,000 video clips, 200 clips per sports category, and
each clip of 20 s duration) comprising of cricket, football,
tennis, basketball and volleyball video categories. The video
clips were captured at the rate of 25 frames/s, at 320 × 240
pixel resolution. The data were collected from different TV
channels in different sessions to capture the variability due to
sessions. For each sports video category, 100 clips are used
for training, and the remaining 100 clips are used for testing.

4.2 Performance of different classifiers

The performance of the AANN based classification system
using EDH, EIH, and combined evidence from EDH and EIH
is shown in Table 1. The performances of the classification
systems based on HMMs and SVMs are given in Tables 2
and 3, respectively. From the results, it can be observed that
the classification performance is poorer for video clips of
cricket and football categories, compared to those of tennis,
basketball and volleyball categories. This is because, in the
latter three categories, the playing fields have well-defined
lines, and they appear in a majority of frames of a video clip.
Moreover, a few well-defined camera views dominate the
broadcast. For example, such views may cover the full court
in tennis or volleyball. Thus, a large area of an image frame
comprises the playing field. On the other hand, in cricket and
football categories the camera view tends to change from one
position to another depending on the action. Thus, continu-
ous motion along with lack of well-manifested edge-specific
information results in poorer classification. It is also evident
that the edge direction is a stronger feature for discriminating
between the classes, compared to the edge intensity. This may
be due to the fact that one can visually perceive the content of
an image from its binary edge image, which preserves only
the edge directions but not the magnitudes. Performance of

Table 1 Performance of
AANN based sports video
classification system using
EDH, EIH, and combined
evidence (correct classification
in %)

Cricket Football Tennis Basketball Volleyball Average
performance

EDH 81 84 95 94 95 89.8

EIH 54 57 93 93 92 77.8

Combined 84 88 100 100 100 94.4

Table 2 Performance of HMM
based sports video classification
system using EDH, EIH, and
combined evidence (correct
classification in % )

Cricket Football Tennis Basketball Volleyball Average
performance

EDH 77 86 92 95 94 88.8

EIH 45 58 84 93 92 74.4

Combined 80 87 93 98 96 90.8
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Table 3 Performance of SVM
based classification system
using EDH, EIH, and combined
evidence (correct classification
in % )

Cricket Football Tennis Basketball Volleyball Average
performance

EDH 81 84 92 93 95 89.0

EIH 68 86 32 89 92 73.4

Combined 83 86 100 100 100 93.8

Table 4 Classification
performance obtained by
combining evidence from
different classifiers (correct
classification in % )

Cricket Football Tennis Basketball Volleyball Average
performance

AANN 84 88 100 100 100 94.0

SVM 83 86 100 100 100 93.8

HMM 80 87 93 98 96 90.8

AANN + SVM 96 94 100 100 100 98.0

AANN + HMM 92 92 100 100 100 96.8

HMM + SVM 90 92 100 100 100 96.4

AANN + HMM + SVM 96 94 100 100 100 98.0

the SVM based classifier is particularly poor for EIH features
compared to AANN and HMM-based classifiers for the same
feature. This is due to lack of discriminative information in
EIH, and also due to the fact that the SVMs are chosen for
their discriminative ability. Since edge direction and edge
intensity features can be viewed as complementary sources
of information, the evidence due to these features can be
combined. Tables 1, 2, and 3 also show the performance of
classification obtained using weighted combination of evi-
dences using EDH and EIH from different classifiers. There
is an improvement in the performance of classification due
to the combination of evidences, from all the classifiers.

4.3 Effect of duration and quality of test video data

The duration of the test data (test video clip) has significant
bearing on the classification performance. Several techniques
for video classification typically use test clips with durations
varying from 60 to 180 s [6,5,9,13,14,31]. The classifica-
tion performance was found to improve with increase in the
duration of the test clip. The average edge ratio used in con-
junction with k-nearest neighbor algorithm requires 120 s of
test data to yield a classification performance of 92.4% on a
five-class problem [6]. The AANN based classifier has bet-
ter generalizing ability than the k-nearest neighbor classifier.
Similarly, a time-constrained clustering algorithm [13] using
compressed color features requires a minimum of 50 s of test
data to yield a classification performance comparable to the
proposed method. The proposed method was applied on test
clips of 20 s duration in all the experiments on video classi-
fication. The performance given in Tables 1, 2 and 3 is com-
parable to the result obtained using larger duration of test
clips. Apart from the duration of the test data, the quality of

the test data also influences the classification performance.
Some methods retain only the class-specific frames in the
test data by editing out images related to crowd/audience or
off-field action [13]. Such editing results in an improved per-
formance. In our experiments, no such editing of the test data
was done.

4.4 Performance on combining evidence from multiple
classifiers

The normalized measurement values obtained from the three
classifiers are combined using linear weighting. Table 4
shows classification performance obtained by combining evi-
dence from different combinations of the three classifiers.
It is observed that the combination of evidences from any
two classifiers results in a better performance than those of
the individual classifiers. The confusion matrix for the final
classifier (combined AANN, HMM, and SVM) is given in
Table 5. The improvement in classification due to combina-
tion of evidence can be attributed to the merits in different
classifier methodologies, which emphasize different types

Table 5 Confusion matrix of video classification results (in %) cor-
responding to the score obtained by combining evidence due to all the
three classifiers (in %) (AANN, HMM, and SVM )

Cricket Football Tennis Basketball Volleyball

Cricket 96 00 04 00 00

Football 02 94 04 00 00

Tennis 00 00 100 00 00

Basketball 00 00 00 100 00

Volleyball 00 00 00 00 100
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of information present in the features, such as their spatial
distribution and temporal sequence.

4.5 Verification of test video sequences using the classifiers

It is necessary to examine the response of a classifier for test
inputs of a different class. More specifically, if a test video
clip belongs to a class other than the above five classes, the
system is not expected to assign the label of any of the five
classes. Instead, the system should assign a separate label to
all such test cases. This, however, depends on two factors:
(a) the nature of evidence/measurement output by a classi-
fier, and (b) the decision logic for assigning a class label to
a test video clip. In SVM-based classifiers, one-against-rest
approach is used for decomposition of multi-class pattern
classification problem into several two-class pattern classifi-
cation problems. Hence, one should ideally get all negative
confidence scores as output of the SVM model for a test clip
which does not belong to any of the predefined categories.
Thus, a natural threshold of 0 helps in decision making in
the case of SVM, although such a decision could also be in
error.

In the case of AANN models and HMMs, the training pro-
cess attempts to capture only the within-class properties, and
no specific attempt is made to distinguish a given class from
others. Thus, a nonclass test input to these models still results
in positive measurements, although small. Figure 7 shows
the histogram of in-class confidence scores along with that
of nonclass confidence scores, for AANN models, SVMs
and HMMs. The scores are normalized between 0 and 1.
The in-class scores are obtained by presenting the test video
clips of a given category to the models of the same cate-
gory. The nonclass scores are obtained by presenting the test
video clips of a given category to the models of other cate-
gories. A total of 100 test video clips of each class are used
to obtain the in-class and nonclass confidence scores. The
extent of separation of the histograms indicates the ability
of the model to discriminate between in-class and nonclass
examples. The area of overlap of the two histograms is a
measure of the minimum classification error. From Fig. 7,
we observe that this area of overlap is least for SVM-based
classifier, followed by AANN-based classifier. If the con-
fidence score corresponding to the intersection of the two
histograms is chosen as threshold for decision, then such a
choice results in minimum classification error on the training
data. The same threshold is used for decision in the case of
test data. Tables 6, 7, and 8 indicate the outcome of present-
ing test video clips of cartoon, commercial and news cate-
gories, to the models based on AANN, SVM, and HMM,
respectively, trained on cricket, football, tennis, basketball,
and volleyball. The entries in the tables denote the percent-
age of misclassification. For instance, if a test video clip of
cartoon category, when presented to the model of cricket
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Fig. 7 Histograms of in-class confidence scores along with nonclass
confidence scores for a AANN models, b HMMs, and c SVM models

category, is labeled as cricket, then the test video clip is said
to be misclassified. For verification, 100 test video clips of
each of cartoon, commercial and news categories are used.
The average misclassification is less than 15% for classifiers
based on AANN and SVM. Classifier based on HMM does
not seem to be very useful for discrimination. The misclassi-
fication error may be reduced further by extracting features
specific to a given class.

4.6 Performance comparison of proposed approach
with existing approaches

The performance of the proposed approach is compared
against some existing approaches in the literature [5–15,31].
In [5], the DCT edge features are used to classify video
sequences into meaningful semantic segments of 24 s dura-
tion. For edges and their duration as features, the correct

123



SIViP (2010) 4:61–73 71

Table 6 Performance of
misclassification ( in % )
obtained from AANN models,
for test clips which do not
belong to any of the five sports
category

Cricket Football Tennis Basketball Volleyball Average
performance

Cartoon 08 06 02 01 01 3.60

Commercial 19 12 08 03 02 8.80

News 24 17 21 05 04 14.20

Table 7 Performance of
misclassification ( in % )
obtained from SVM models, for
test clips which do not belong to
any of the five sports category

Cricket Football Tennis Basketball Volleyball Average
performance

Cartoon 39 16 02 01 04 12.00

Commercial 34 03 02 01 01 8.40

News 55 12 01 02 01 14.00

Table 8 Performance of
misclassification ( in % )
obtained from HMM models, for
test clips which do not belong to
any of the five sports category

Cricket Football Tennis Basketball Volleyball Average
performance

Cartoon 47 16 27 01 25 22.20

Commercial 59 02 28 02 33 24.80

News 11 08 01 02 01 4.40

classification is about 65%. In [6], the average edge ratio
is used in conjunction with k-nearest neighbor algorithm.
The method requires 120 s of test data to yield a classifi-
cation performance of 92.4% on a five-class (badminton,
soccer, basketball, tennis, and skating) problem. In [7], a
motion pattern was used to classify the video contents at
the semantic level using SVM. A 10-h long video program
including science and educational films, sight-seeing videos,
stage performances, and sports video were segmented into
shots, and each shot was classified into semantic concepts.
An average classification performance of 94% was achieved.
The approach described in [8] uses statistical nonparametric
modeling of motion information to classify video shots into
temporal texture (rivers, grass motion, trees in the wind),
sequences of pedestrians and traffic video shots. The method
achieved mean recognition rate higher than 90%.

Motion dynamics such as foreground object motion and
background camera motion are extracted in [10] for classi-
fication of video sequences into three categories, namely,
sports, cartoon and news using Gaussian mixture models
(GMMs). Using 30 s clips, this method gives a classification
performance of about 94%. The approach described in [11]
uses statistical models (GMM) of reduced DCT or Hadamard
transform coefficients, and gives 87% correct classification
rate for six different video shots consisting of presentation
graphics, long shots of the projection screen both lit and unlit,
long shots of the audience and medium close-ups of human
figures on light and dark backgrounds.

In [12], GMM was used to model low-level audio/video
features for the classification of five different categories,
namely, sports, cartoon, news, commercial, and music. An

average correct classification rate of 86.5% was achieved
with 1 h of recordings per genre, consisting of continuous
sequences of 5 min each and 40 s decision window. In [13],
vector quantization and HMM are used to characterize sports
videos such as basketball, ice hockey, soccer, and volley-
ball based on motion information. The length of the video
sequences ranged from 43 s to 1 min. The method achieved
an average performance of about 82 and 88% using vector
quantization and HMM, respectively.

Another approach described in [14] uses HMMs and
motion and color features for classification of four differ-
ent sports videos, namely, ice hockey, basketball, football
and soccer. The method achieved an overall classification
accuracy of 93%. Each testing sequence is of 100 s dura-
tion. In [15], a decision tree method was used to classify
video shots into different genres such as movie, commer-
cial, music, and sports based on motion and color informa-
tion. This method achieved an average prediction accuracy
of nearly 75%. In [31], the C4.5 decision tree was used to
build the classifier for genre labeling using a set of features
that embody the visual characteristics of video sequences,
such as news, commercial, music, sports, and cartoon. The
average classification performance was between 80 and 83%
for video clips of 60 s duration.

The method proposed in this paper uses AANNs to clas-
sify five sports categories, namely, cricket, football, tennis,
basketball, and volleyball based on edge-specific features.
Despite using shorter duration test clips (20 s), the proposed
method yields an average classification performance of
94.4% which compares favorably with existing approaches
that use longer duration test clip.
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Fig. 8 A five-layer AANN model

5 Summary

We have presented an approach for classification of sports
video based on edge-specific features, namely, EDH and EIH.
We have exploited the ability of AANNs to capture the dis-
tribution of feature vectors. Two other classifiers, namely,
HMMs and SVMs were also examined. A video database
of TV broadcast programs containing five sports video
categories, namely, cricket, football, tennis, basketball and
volleyball was used for training and testing the models.
Experimental results indicate that the edge-based features
can provide useful information for discriminating the classes
considered, and that the EDH is a superior feature compared
to the EIH. It was shown that combining evidences from
complementary edge features and from different classifiers
results in an improvement in the performance of classification.

It is also observed that the classification system is able to
decide, whether a given test video clip belongs to one of the
five predefined video categories or not. In order to achieve
better classification performance, evidence from audio and
visual features may be combined.

Appendix

Autoassociative neural network models

Autoassociative neural network models are feedforward neu-
ral networks performing an identity mapping of the input
space, and are used to capture the distribution of the input
data [18,32]. The distribution capturing ability of the AANN
model is described in this section. Let us consider the five-
layer AANN model shown in Fig. 8, which has three hidden
layers. In this network, the second and fourth layers have
more units than the input layer. The third layer has fewer
units than the first or fifth. The processing units in the first
and third hidden layer are nonlinear, and the units in the sec-
ond compression/hidden layer can be linear or nonlinear. As
the error between the actual and the desired output vectors
is minimized, the cluster of points in the input space deter-
mines the shape of the hypersurface obtained by the projec-
tion onto the lower dimensional space. Figure 9b shows the
space spanned by the 1-dimensional compression layer for
the 2-dimensional data shown in Fig. 9a for the network struc-
ture 2L 10N 1N 10N 2L, where L denotes a linear unit and
N denotes a nonlinear unit. The integer value indicates the
number of units used in that layer. The nonlinear output func-
tion for each unit is tanh(s), where s is the activation value
of the unit. The network is trained using backpropagation
algorithm [21,22]. The solid lines shown in Fig. 9b indicate
mapping of the given input points due to the 1-dimensional

Fig. 9 Distribution capturing
ability of AANN model.
a Artificial 2-dimensional
data. b 2-dimensional output
of AANN model with the
structure 2L 10N 1N 10N 2L.
c Probability surfaces
realized by the network
structure 2L 10N 1N 10N 2L
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compression layer. Thus, one can say that the AANN captures
the distribution of the input data depending on the constraints
imposed by the structure of the network, just as the number
of mixtures and Gaussian functions do in the case of GMM.

In order to visualize the distribution better, one can plot
the error for each input data point in the form of some prob-
ability surface as shown in Fig. 9c. The error Ei for the data
point i in the input space is plotted as pi = exp(−Ei /α), where
α is a constant. Note that pi is not strictly a probability den-
sity function, but we call the resulting surface as probability
surface. The plot of the probability surface shows a large
amplitude for smaller error Ei , indicating better match of the
network for that data point. The constraints imposed by the
network can be seen by the shape the error surface takes in
both the cases. One can use the probability surface to study
the characteristics of the distribution of the input data cap-
tured by the network. Ideally, one would like to achieve the
best probability surface, best defined in terms of some mea-
sure corresponding to a low average error.
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